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ABSTRACT 
We describe the effort and experience in generating a hybrid 
parallel version of MFIX (Multiphase Flow with Interphase 
eXchanges), a code for modeling reactive multiphase flow in 
fluidized beds. The code uses portable OpenMP and MPI in a 
unified source code. The resulting parallel code has been ported to 
Beowulf Linux clusters, SGI shared memory multiprocessors, 
Compaq SC clusters, and an IBM SP. We present hybrid parallel 
performance results specifically on the 32-way node of IBM SP. 
This experience is relevant, as most modern high-performance 
computing (HPC) systems are clusters of SMP nodes. 

1. BACKGROUND 
Fluidized bed reactors have a long history of application in many 
industrial processes, e.g., in the chemical, petroleum, 
pharmaceutical, mineral and fossil fuel processing industries. 
However, in spite of their wide use, much of the development and 
design of fluidized bed units has been empirical due to the 
complex nature of the multi-phase flow processes that control 
heat, mass, and momentum transport. Current understanding of 
these multi-phase processes remains very limited, and direct 
experimental measurements are difficult due to the dense and 
erosive condition of the flows. When diagnostic tools are 
available, there are often major concerns about how the 
measurement devices themselves alter the natural dynamics. 
Computational tools are being used more extensively to fill the 
gap between the available experiments and the actual dynamics of 
the fluidized beds. Broadly speaking, there are two different 
approaches used for detailed time dependent simulations of 3-D 

multi-phase flow problems (for interesting comparisons see [23]): 

a) Discrete Element Method (DEM) (also referred to as Eulerian-
Lagrangian treatment) 

b) Two-fluids Model (also referred to as Eulerian-Eulerian 
Treatment, Continuum model etc.,) 

In the DEM, the gas-phase is modeled as in the single-phase using 
the traditional Navier-Stokes equations and the discrete phase is 
modeled as a collection of particles. These particles either 
represent an individual particle or a parcel of particles. The 
trajectories of the particles are obtained in a Lagrangian fashion 
by solving the Newton's equations of motion where the effects of 
collisions are explicitly calculated. Phase interaction terms are 
included in both sets of equations. The use of this approach is 
very restricted because of the computational cost involved in 
tracking millions of particles (e.g. over 300 million particles in 
our test problem). 

The two-fluid approach is based on the assumption that the 
discrete-phase can be described as an inter-penetrating media. 
This way the traditional Navier-Stokes framework used for gas-
phase simulations can be used to solve for the effects of the 
discrete phase. In this method, a distribution of particles can be 
described as multiple phases – each phase representing a range of 
particles whose mean corresponds to the value assigned to that 
phase. In this paper, we use MFIX – a code based on this multi-
fluid approach. MFIX has been developed at the National Energy 
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Technology Laboratory (NETL) for over a decade. It is a general-
purpose computer code for describing the hydrodynamics, heat 
transfer and chemical reactions in a heavily-loaded, fluid-particle 
system. It has been used for describing bubbling, spouted and 
circulating fluidized beds. MFIX calculations give transient field 
data on the three-dimensional distribution of pressure, velocity, 
temperature, and species mass fractions. 

Multiphase flows characteristically exhibit a transient behavior, 
associated with fluctuations in the local loading [1]. Depending on 
the operating regime, these fluctuations are termed “bubbles”, 
clusters or strands. In single-phase flow, such fluctuations in 
dependent variables would be considered turbulence and many 
models have been developed that allow direct calculation of the 
time-averaged behavior of such flow. For multiphase flow, such 
models are not well developed, although constant progress is 
being made [12, 15]. Thus, at the present time, transient 
simulations are required to describe heavily-loaded gas-particle 
flows. Such calculations are very CPU intensive and may require 
days of computation on a fast massively parallel computer. 

     This paper reports on the performance of the hybrid parallel 
version of MFIX suitable for a distributed memory computing 
environment such as a Beowulf Linux cluster or an IBM SP 
multiprocessor. Section 2 describes the theoretical and numerical 
formulation. Section 3 describes the first stage in generating a 
shared memory parallel version using OpenMP compiler 
directives. Section 4 describes the enhancements in generating the 
distributed memory version. Finally, section 5 presents the results 
of a test problem and the performance on an IBM SP4. 

2. MFIX THEORY AND NUMERICAL 
FORMULATION 
MFIX assumes a continuum model of inter-penetrating fluid and 
solid phases [3, 10]. It has the following capabilities: mass and 
momentum balance equations for gas and multiple solids phases; 
gas phase and solids phase energy equations; an arbitrary number 
of species balance equations for each of the phases. MFIX 
incorporates granular stress equations based on kinetic theory and 
soil mechanics. For reactive flows, a user may specify the 
chemical reactions using a supplied template. MFIX uses a finite 
volume discretization on three-dimensional Cartesian or 
cylindrical coordinate systems. The grid is logically rectangular 
allowing non-uniform mesh size. Flexible input and boundary 
conditions, such as impermeable and semi-permeable internal 
surfaces, can be accommodated. The code uses portable OpenMP 
and MPI in a unified source code. The code has been ported to 
Beowulf Linux clusters; SGI shared memory multiprocessors, 
Compaq SC clusters, and IBM SP. 

Here is a brief background on the equations being solved in 
MFIX. If different phases can be mathematically described as 
inter-penetrating continua, two distinct approaches can be used to 
derive the multi-phase flow equations: the averaging approach and 
the mixture theory approach. In the averaging approach, the 
equations are derived by space, time, or ensemble averaging of the 
local, instantaneous balances for each of the phases [3, 8, 13, 14]. 
In the mixture theory approach, equations that are generalizations 
of single-phase equations are postulated [5, 6, 18]. Both 
approaches yield a similar set of balance equations that must be 
closed by specifying several constitutive relations, such as a fluid-
phase equation of state, fluid-solids and solids-solids momentum 
transfer and heat transfer, and fluid and solids phase stress tensors. 

The principle of material frame-indifference, the second axiom of 
thermodynamics, material symmetry, and overall balance 
equations for the mixture yield several useful restrictions to 
narrow down the choice of the constitutive relations [6]. 

To proceed further toward solving practical problems, it is 
necessary to supply specific constitutive relations. This 
challenging task is accomplished by using a variety of approaches, 
ranging from empirical information to kinetic theory. Most of the 
differences between multi-phase theories originate from such 
closure assumptions, which are the subject of much debate. The 
governing equations solved in MFIX are based on various sources 
(MFIX Theory Guide [22]), but the pervading influence of 
Professor Jackson's work [3] is evident. 

Using the spatial-averaging approach to derive equations that 
describe inter-penetrating continua, the point variables are 
averaged over a region that is large compared with the particle 
spacing but much smaller than the flow domain. New field 
variables, the phasic volume fractions, are introduced to track the 
fraction of the averaging volume occupied by various phases. 
These volume fractions, which must sum to one, are assumed to 
be continuous functions of space and time. 

Currently, MFIX uses the implicit backward Euler method for 
time discretization and allows several options (including 
Superbee, SMART, and upwind) for spatial discretization. At 
each time step, MFIX uses Picard fixed point iteration to solve the 
set of coupled, highly nonlinear equations that arise from the 
discretization of transport and conservation laws. The strong 
nonlinearity arises from the intimate coupling between multiple 
phases and the strong dependence of the solid pressure on solid 
fraction, especially in regions where the solid phase is dense and 
tightly packed. The set of nonlinear equations is linearized using 
the SIMPLE [19] formulation of fluid/solid velocity correction 
and fluid/solid pressure correction. For each component of 
velocity and pressure, MFIX solves a system of sparse, non-
symmetric linear equations corresponding to a regular seven-point 
stencil on a logically rectangular grid. The interested reader can 
consult the MFIX Numerical Guide [21] for more details. 

3. SHARED MEMORY 
PARALLELIZATION 
 A shared memory parallel (SMP) version of MFIX, using 
portable OpenMP directives, was developed from the FORTRAN 
90 version of MFIX. Profiling information suggested that over 
70% of the overall runtime was consumed in the linear solver 
routines. The remaining time was spread across many subroutines. 
The do-loops of the most time consuming routines were manually 
parallelized with OpenMP directives. Some care was required to 
appropriately declare local, shared and reduction variables. 

   The current base-line version of MFIX supports highly 
optimized versions of BICGSTAB or GMRES [4] as linear 
solvers. The choices of preconditioners available are: none, 
diagonal and line/plane relaxation.  These implementations take 
advantage of the logically rectangular “I, J, K” data structure. 
Matrix-vector multiplies are computed in place and parallelized 
by independent dot-products across rows. The performance of 
various preconditioners in some numerical experiments of typical 
problems has had mixed results – some problems favored one 
versus some favored others. Their effectiveness also depends on 
the transients in the simulation and can vary with time within any 



simulation. The tridiagonal line solves were performed by 
LAPACK routine DGTSV [2]. From numerical experiments, our 
implementation of BICGSTAB was often faster than GMRES 
even though, theoretically, GMRES provides the optimal estimate 
and guarantees monotone progress. In most practical devices, the 
flow is through narrow, vertical ducts; the coupling is strongest in 
this long direction. In either Cartesian or cylindrical coordinates, 
this dominant direction is the “J” direction. Since the code uses 
line relaxation, the node order was reassigned to be J-fastest, then 
I, then K-slowest to increase memory bandwidth by traversing 
memory with unit stride. Fortunately, the code consistently uses 
an in-line macro FUNIJK, contained in an include file, to map 
from “I, J, K” indices to a one dimensional linear array (One-
dimensional linear arrays were originally used to encourage 
vectorization.) This reordering was accomplished easily by 
modifying the FUNIJK in-line FORTRAN function. In order to 
maintain compatibility with post- processors, and to read archived 
restart files, routines performing I/O still adhere to the original 
order of I-fastest, then J, then K-slowest. 

4. DISTRIBUTED MEMORY 
PARALLELIZATION 
The distributed memory parallel (DMP) version uses domain 
decomposition across the “I”, “J”, and “K” dimensions in any 
user-specified manner. The MPI communication library is 
encapsulated in a suite of FORTRAN 90 modules. These modules 
provide high level capabilities such as updating the overlapped 
region, array dot product, and array gather/scatter for I/O 
operations. The generic interface allows overloading the same 
subroutine name and argument list for communicating arrays of 
different ranks and types, which greatly minimizes the changes to 
the SMP code. All MPI communication is optimized by 
precomputing the communication schedule once and then reusing 
it. The modules also allow easy reconfiguration for debugging, 
serial runs or special optimized settings on the Linux cluster. 

     Although one extra ghost layer is normally sufficient for 
domain decomposition, the parallel implementation of high order 
schemes requires the use of two or more ghost layers. In the 
current implementation, two ghost layers are used across all 
processors, and a small amount of redundant computation is 
performed for the ghost region.     MFIX uses a sequential solver 
for all the variables and, as one traverses through the solution, 
several auxiliary variable arrays have to be computed in order to 
obtain the solution of the primitive variables (such as fluid 
velocity). By extending the calculations of these 
variables/properties to the first and second ghost layers, thus 
keeping these values current with the neighboring processor, the 
need for communication of these auxiliary variables in various 
routines has been eliminated. Thus communication is limited to 
the routines updating the primitive variables in the linear solver, 
and this reduces the communication costs by a factor of 3 to 4. 

     Since the iterative solver is the major computational kernel, we 
have attempted to optimize the matrix-vector operation by 
overlapping communication with computation in the interior 
nodes. However, such overlapping did not result in significant 
improvement, perhaps due to poor cache utilization in revisiting 
the arrays twice.  

5. PARALLEL PERFORMANCE 
5.1  Test problem  
As a benchmark problem we used the simulation of a circulating 
fluidized bed with a square cross-section, corresponding to 
experiments conducted by Zhou et al. [24, 25]. The bed has a 
square cross-section, 14.6 cm wide, and is 9.14 m in height. The 
schematic of this setup is shown in Fig. 1a. The solids inlet and 
outlet are of circular cross-section in the experiments but for 
geometric simplicity, we have represented them by square cross-
section. The area of the square openings and the mass flow rate 
corresponds to that of the experiments. At a gas velocity of 55 
cm/s the drag force on the particles is large enough to blow the 
particles to the top of the bed and make the bed flow like a fluid 
or fluidized bed. The particles strike the top wall and some of 
them exit through the outlet while the rest fall down to encounter 
the upcoming stream of solids and gases. 

 
Figure 1: Schematic of the simulated CFB.  
 
In the benchmark problem a three-dimensional Cartesian 
coordinates system was used. The spanwise directions were 
discretized into 60 cells (0.24 cm, I & K-dimensions) and the 
axial, streamwise direction into 400 cells (2.29 cm, J-dimension). 
The total number of computational cells is around 1.6 million, 



including the ghost cells; the dynamic memory required is around 
1.6 GB. Three-dimensional domain decomposition was performed 
depending on the number of processors for the DMP run. A low-
resolution simulation was also carried out with half the resolution 
in each of the three directions for comparison. 

In all of the numerical benchmarks reported here for the high-
resolution case, two-different preconditioners were used with 
BICGSTAB linear solver. In one case, red-black coloring in the I-
K plane and line-relaxation along J direction was used. With red-
black coloring, the number of BICGSTAB iterations is quite 
insensitive to the number of subdomains used. In the other case, 
no preconditioner was used. The benchmarks reported here were 
carried out on one 32-way node of the machine Cheetah at the 
center for Computational Sciences, Oak Ridge National 
Laboratory. Cheetah is a 27-node IBM pSeries System, each node 
with sixteen Power4 chips, a chip consisting of two 1.3 GHz 
Power4 processors. Each processor has a Level 1 instruction 
cache of 64 KB and data cache of 32 KB.  A Level 2 cache of 1.5 
MB on the chip is shared by the two processors, and a Level 3 
cache of 32 MB is off-chip. Cheetah's estimated computational 
power is 4.5 TeraFLOP/s in the compute partition. 

5.2 Numerical Results 
Figure 2 compares the axial-profiles of the time-averaged voidage 
with the experiments. The voidage is defined as the volume 
fraction of the gas in any given cell; a voidage of 1 corresponds to 
pure gas and a voidage of 0 corresponds to pure solid (although 
this is physically and numerically impossible as the solids go to 
random close packing with voidage around 0.4, depending on the 
particle size). The results at three different lateral locations match 
very well downstream of the inlet region but are not as accurate in 
the inlet region (although there is some ambiguity in the precise 
inlet geometry from the limited information in the literature [24, 
25]). The higher resolution results seem to agree with experiments 
better than lower resolution ones near the inlet; even higher 
resolution might be required to resolve the relevant scales in this 
section. The voidage across the bed (Fig. 3) is predicted well in 
the upper quarter of the bed. The solids velocity (Fig. 4) is in 
much better agreement in the near-wall regions of the bed while it 
is over predicted near the centerline for higher sections in the bed. 

 
Figure 2: Axial profiles of time-averaged voidage fraction. 
 
 

 
Figure 3: Lateral profiles of time-averaged voidage fraction. 
 

 
Figure 4: Axial profiles of time-averaged solids velocity at a 
height of 5.13m. 

                 
Figure 2: Snapshots of voidage fraction in the Y-Z plane at X 
= 1.2 cm for different times: a) 1.12s, b) 2.0s, c) 2.82s, and d) 
3.42s. Here red represents low voidage (0.6) and blue 
represents high voidage (1.0). Regions of red (low voidage) 
have higher concentrations of solids and blue corresponds to 
higher concentrations of air. 

 



 
Table 1: Runtimes (in seconds) for 10 iterations for the case using line relaxation as the preconditioner (bold indicates fastest 
runtimes for P processors). 

Threads per MPI task 
MPI tasks 1 2 4 16 32 

1  3198 1680 694 455 

2 3208 1569 911 362  

4 2000 1121 683   

16 504 238    

32 239     

 
 
Table 2: Speedup numbers for the case with line relaxation as preconditioner (bold indicates highest speedup). 

Threads per MPI task 
MPI tasks 

1 2 4 16 32 

1  2.0 3.8 9.2 14.1 

2 2.0 4.1 7.0 17.7  

4 3.2 5.7 9.4   

16 12.7 27.0    

32 26.9     

 
Figure 5 shows instantaneous void fraction snapshots which show 
recirculation of solids in the vessel. The solids are injected at the 
base and the high velocity inlet gas carries them to the top (Fig. 
5a). The solids accumulate at the bottom. There is also a slight 
build-up of solids near the top, due to exit effects. Most 
recirculation of solids is in a narrow band close to the walls (Fig. 
5b). The solids accumulated on the top fall down and encounter 
the upflow at the centerline of bed and tend to move towards the 
walls (Fig. 5c). Finally in Fig. 5d, the falling solids are mixed with 
the upcoming solids so as to be recirculated to the top. These 
figures are shown here as an illustration of the physics that can be 
captured using numerical simulations; a more detailed analysis of 
this data will be published in another journal. 

5.3 Parallel Results 
Table 1 shows the execution times of the code on one node of the 
IBM SP Cheetah, for ten time steps of the test problem using line 
relaxation as the preconditioner. An entry in the table gives the 
running time in seconds on P processors, where P is the product of 
the number of MPI tasks and the number of threads per task. In all 
the runs, message passing was through the internal shared 
memory and not over the network. The runtime on a single 
processor is not included in the table due to the large problem size 
which resulted in an extremely long execution time. The runs 
were carried out several times and the best times are recorded 
here. The execution times for 8 tasks or 8 threads are not reported 
here as the run times varied drastically from one run to another 
run and this behavior could not be explained. Further analysis is 
required to ascertain the reasons.  
Table 1 indicates that for a fixed number of processors, the 
execution time of the code is affected by the mix of the number of 

MPI tasks and the number of threads per task. For the test 
problem on 32 processors, 32 one-thread or 16 two-thread MPI 
tasks give the best combination. In general, the simple rule of 
“one thread per MPI task, one MPI task per processor” gives the 
best performance. This general observation is consistent with 
previous hybrid parallelization efforts on somewhat similar 
architectures [16, 17]. One of the reasons might be the fact that 
thread creation/destruction is very expensive on the IBM SPs. 
Replacing the loop-level SMP model with a program-level SMP 
model, where the data is decomposed among threads at the 
beginning of the program, may incur less overhead. 

 
Figure 6: SMP/DMP Speedup Comparison. 
 



Table 3: Runtimes (in seconds) for 10 iterations for the case with no preconditioner (bold indicates fastest runtimes for P 
processors). 
 

Threads per MPI task MPI tasks 
1 2 4 16 32 

1  2584 1609 593 426 

2 2386 1625 1092 337  

4 1770 1009 585   

16 372 194    

32 186     

 
Table 4: Speedup numbers for the case with no preconditioner (bold indicates highest speedup). 
 

Threads Threads -> MPI 
Tasks 1 2 4 16 32 
1  1.9 3.0 8.1 11.2 

2 2.0 2.9 4.4 14.2  

4 2.7 4.7 8.2   

16 12.8 24.6    

32 25.7     

 
 
 

 
Figure 7: Parallel performance for all the cases (Table 2) with 
line relaxation as the preconditioner. 
 

Table 2 gives the parallel speedup of the code; the timings in 
Table 1 were scaled to give a speedup of 2 on two processors, 
each running a single-thread MPI task. Figure 6 compares the 
SMP and DMP parallel performance. It clearly shows that the 
DMP performance is far better than that of SMP in the extreme 
case of hybrid parallelization. Figure 7 captures the essence of the 
data given in Table 2. It is very evident that DMP parallelization, 
for this problem on this architecture, is desirable. 
Table 3 gives the runtimes of the code for the test problem 
without the use of preconditioner. This required 124 nonlinear 
iterations for ten time steps compared to the 107 iterations when 
using the line relaxation preconditioning. However, the code was 
20% faster without preconditioning; this may be attributed to the 
considerably lower cost of an iteration without preconditioning. 
Table 4 translates the execution times into speedups, and the 
speedups are graphically depicted in Figures 8 and 9. On close 
observation of speedup data, it can be noted that the shared 
memory efficiency has dropped further, presumably because the 
code must take more iterations to converge than with line 
relaxation. This would increase the number of threads 
created/destroyed per time-step and explains the poorer 
performance of the SMP code.   
The code has to be profiled extensively for a range of problems 
and also for different architectures before any general conclusions 
can be made regarding the advantages of DMP code versus a 
hybrid code.  In the present case, MPI communication is memory-
to-memory copy as all the processors belong to the same node. 
Some of the conclusions might change using node-to-node 
communication. 



 
Figure 8: SMP/DMP Speedup Comparison. 
 

 
Figure 9: Parallel performance for all the cases (Table 4) with 
no preconditioner. 
 

5.4 Future development  
We have described the performance of a hybrid version of MFIX. 
To collect reasonable statistics in flow characteristics, ten 
thousand or more time steps are normally required. Even on a fast 
parallel machine, a complete run may take several days/weeks of 
computation. These numerical experiments suggest further 
algorithm development in MFIX and improvement in parallel 
performance is still needed in several areas:  

• more efficient parallel plane or multigrid like preconditioners 
for BICGSTAB 

• better adaptive time stepping heuristics coupled to the 
nonlinear equation solver as suggested in Gustafsson [11] 

• better nonlinear equation solver by Newton-Krylov method 
[20] or dynamic primary variable switching technique as 
used by Forsyth [9] and Diersch [7] for saturated-unsaturated 
flows in groundwater modeling. 

 The documentation, technical reports related to MFIX, and the 
latest version of MFIX source code are all available from 
http://www.mfix.org.  
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